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The effect of an unsteady shear flow on the planform of convection in a Boussinesq 
fluid heated from below is investigated. In the absence of the shear flow it is well- 
known, if non-Boussinesq effects can be neglected, that convection begins in the 
form of a supercritical bifurcation to rolls. Subcritical convection in the form of say 
hexagons can be induced by non-Boussinesq behaviour which destroys the symmetry 
of the basic state. Here it is found that the symmetry breaking effects associated 
with an unsteady shear flow are not sufficient to cause subcritical convection so the 
problem reduces to the determination of how the orientations of roll cells are modified 
by an unsteady shear flow. Recently Kelly & Hu (1993) showed that such a flow 
has a significant stabilizing effect on the linear stability problem and that, for a wide 
range of Prandtl numbers, the effect is most pronounced in the low-frequency limit. 
In the present calculation it is shown that the stabilizing effects found by Kelly & 
Hu (1993) do survive for most frequencies when nonlinear effects and imperfections 
are taken into account. However a critical size of the frequency is identified below 
which the Kelly & Hu (1993) conclusions no longer carry through into the nonlinear 
regime. For frequencies of size comparable with this critical size it is shown that 
the convection pattern changes in time. The cell pattern is found to be extremely 
complicated and straight rolls exist only for part of a period. 

1. Introduction 
Our concern is with the effect of an unsteady shear flow on the evolution of 

convection rolls in a Boussinesq fluid. In recent papers, Kelly & Hu (1993,1994) 
showed that a time-periodic, non-planar shear flow can significantly stabilize a fluid 
layer heated from below. Subsequently Hall & Kelly (1994) showed that steady and 
unsteady shear flows remove the preference for hexagonal shaped cells at the onset 
of convection in a non-Boussinesq fluid. Essentially this is achieved by splitting 
sufficiently far apart the critical Rayleigh numbers for the triad of roll disturbances 
which combine to form a hexagonal cell. 

The stabilizing mechanism found by Kelly & Hu (1993) can perhaps be explained by 
the well-known results for convection in a steady unidirectional flow; see for example 
the recent review by Kelly (1994). If a layer of fluid heated from below is subject to 
shear flow in the x-direction then it is easy to show that the critical Rayleigh number 
for rolls aligned with the x-axis is not altered by the flow. However, rolls aligned 
at any non-zero angle to the x-axis are stabilized by the shear, and, at small flow 
Reynolds numbers &, the increase in the critical Rayleigh number is of order R,'. For 
non-planar shear flows general disturbances cannot align themselves with the shear 
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and stabilization results. Kelly & Hu (1993) found that an oscillatory non-planar 
shear flow has a maximum stabilizing effect at low frequencies (for sufficiently high 
values of the Prandtl number). This is exactly what we would expect if the stabilizing 
effect of a unidirectional flow were, in some sense, integrated over time and all roll 
orientations. 

In the present paper we will focus on the nonlinear selection process for convection 
in the presence of a low-frequency shear flow induced by oscillations of the lower 
wall. We choose to concentrate on the low-frequency regime because it is here that 
the stabilizing effect found by Kelly & Hu (1993) is generally most pronounced and 
because Kelly & Hu’s linear analysis needs clarification there. Thus we shall look 
at the interaction of all possible roll disturbances at a given Rayleigh number. We 
note that hexagonal cells are not possible for a Boussinesq fluid in the presence of 
a small-amplitude unsteady shear flow. This is in contrast to the case investigated 
by Roppo, Davis & Rosenblat (1984) who found that a periodic modulation of 
the boundary temperature conditions could induce hexagonal convection. Here the 
situation is different because the leading-order temperature gradient is still linear, and 
the analysis of Hall & Kelly (1994) shows that the symmetry breaking effects of the 
shear flow are sufficiently reduced by the splitting apart of the constituent roll modes 
of hexagonal convection, or indeed any subcritical convection, to take place. 

In the first instance we shall in $2 derive the nonlinear ordinary differential equation 
for the amplitude of single set of roll disturbances in an unsteady flow. The equation 
is similar to that found for Taylor vortex disturbances in journal bearings by DiPrima 
& Stuart (1975). Floquet theory is used to discuss the stability properties of the 
bifurcating finite-amplitude disturbances given in that Section. 

In $3 we extend our analysis to derive the coupled evolution equations for all 
possible roll disturbances. The possible stable finite-amplitude roll modes are deter- 
mined but our analysis breaks down for modes orientated in a direction close to 
that of the most dangerous linear mode. A separate analysis is carried out for a 
three-dimensional packet of modes centred on the most dangerous one. This analysis 
is also presented in 93 and we obtain a generalization of the Newell-Whitehead (1969) 
equation which accounts for the effect of a small-amplitude unsteady shear flow. An 
analysis of the solutions of this equation then determines the possible stable states 
when the Rayleigh and/or Reynolds numbers are increased slightly beyond their 
critical values according to linear theory. 

In $4 we determine a lower bound for the frequency below which the system 
behaves in a quasi-steady manner. This is done using the ideas of Hall (1983) and 
Lettis (1987). The main idea is that, at low enough frequencies, small imperfections 
in the system can produce the local growth and equilibration to a state anticipated 
on the basis of a quasi-steady analysis even when an imperfection-free analysis along 
the lines of Hall (1975) predicts no convection. Finally in Section 5 we will draw 
some conclusions. 

2. The evolution equation for a convection roll in an unsteady shear flow 
We consider the flow of a Boussinesq fluid confined between the walls at z = 0, d.  We 

suppose that the lower wall has temperature To+AT whereas the upper one has tem- 
perature TO. Furthermore the lower wall has velocities (rc/d)Al,cos 07, ( I C / ~ ) &  cos[wz+ 
y ]  in the x- and y-directions. Here we have denoted the thermal diffusivity by IC and 
z is a dimensionless time variable scaled on d 2 ~ - l .  We shall confine our attention to 
the case OQCJ, CJ being the Prandtl number, so that fluid motion driven by the wall is 
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quasi-steady. Following Kelly & Hu (1993) and Hall & Kelly (1994) we assume that 
the flow oscillations are of small amplitude and therefore write 

2 A, = 216, A2 = 226, 0 = aa2, t = 6 7, 

and then 11,& and a are held fixed in the limit 6 -+ 0. Throughout this paper we 
shall scale velocities on ~ / d  so that for small 6 the basic flow is given by 

= a{I1 c~~ a t ,  l2 cos[at + ?I, O)(I - z )  + 0(s3). 
The basic temperature fluid does not depend on the shear flow and is therefore 

proportional to the scaled vertical coordinate z .  A linear instability analysis shows 
that the shear flow produces an order-a2 correction to the critical Rayleigh number 
&; see Kelly & Hu (1993). 

Hall & Kelly investigated the manner in which finite-amplitude hexagonal convec- 
tion cells occurring in a non-Boussinesq fluid are modified by the shear flow. The 
latter analysis requires the interaction of a triad of rolls which reinforce each other 
at quadratic order. Here we restrict our analysis to Boussinesq fluids and small- 
amplitude shear flows and, as a result of these restrictions, no subcritical bifurcation 
is possible. For simplicity in the analysis we consider the wall to be driven by a 
prescribed shear stress and so assume the perturbation shear stress to be zero at 
both boundaries. Relative to the case of a fixed velocity, we expect the results to be 
qualitatively correct at low frequencies. In the first instance we shall here consider the 
nonlinear evolution of a single mode and we seek a finite-amplitude solution with R 
differing from its critical value R, = 27n4/4 by O(S2).  We therefore write 

R = & + h2k2 +. . ., 
and expand, for example, the perturbed normal velocity in the form 

w = -6X(t)sinnzexpi 3n2 { kx [ x -  l1 26a sin at ] + k ,  [ y - ' 2 s i ~ ~ ~ + y )  
2 

+ complex conjugate. (2.1) 

Here the time-dependent term in the exponential factor has been inserted in order 
that the order-h2 solvability condition is automatically satisfied. At cubic order, by 
use of a similar condition, we find that the amplitude function X(t) satisfies the 
equation 

dX 
- = ,U { 82 - A*G2(t)} X - aXIXI2, 
dt 

where 
G(t) = ll cos 8 cos at + 1, sin 8 cos(at + y), (2.3~) 

with 

(2.3b) 

and the constants A*,p are as defined by Hall & Kelly (1994). 

over one period; the flow is then found to be neutrally stable at R2 = R2(8) when 
If we ignore the nonlinear term in (2.2) we can integrate to fi?d the change in X 

A* 
2 

R2(8) = - { 2; cos2 8 + 2; sin2 8 + 2&x2 sin 8 cos 8 cos y 
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The constant A' is always positive so that & ( Q )  is also positive for 11,12 > 0, and 
the flow oscillations have a stabilizing effect on the convection. In general & ( Q )  has 
a minimum for each value of (11,I,,y) so that there is a linear selection process to 
determine the orientation of the first roll mode to be excited. Here we shall investigate 
the role of nonlinear effects in the selection mechanism. 

An important result found by Kelly & Hu (1993) is that the stabilizing effect is a 
maximum in the limit of zero frequency for the case of one wall oscillating and with 
o > 2. At low frequencies intuition leads us to expect that a quasi-steady response 
of the fluid should occur with the rolls being in the direction of the shear so that 
R2 = 0. However (2.4) is not consistent with the result of a quasi-steady instability 
analysis based on the instantaneous profile. Therefore some further analysis must be 
carried out. In fact a similar inconsistency between theory (both linear and nonlinear) 
and physical intuition was found for the modulated Taylor vortex problem by Hall 
(1975). The reconciliation of theory with what we expect the fluid response to be 
at low frequencies was first given by Lettis (1987). Essentially it turns out that the 
theory only holds until the modulation is slow enough for a disturbance to amplify 
from an imperfection in the system whenever the flow is instantaneously unstable. 
The same mechanism will be shown to be crucial in the problem considered here. 
Before going on, it should be noted that for this particular flow, axes can be defined 
in the quasi-steady limit that are aligned with the shear. For more general basic flows, 
such axes might not exist, and so stabilization can then be obtained as !2 + 0. 

The jinite-amplitude solution and its stability 

The coefficients of (2.2) are real so that, following DiPrima & Stuart (1975), without 
any loss of generality we can take X to be real and integrate to find the periodic 
solution 

with I ( t )  = exp{2pJi[-i'G2 + &])dt. 

by X and integrate over a period, we find that 
It is easy to see from (2.2) that this solution exists for k2 > &(O) since, if we divide 

Thus the mean value of [XI2 over a period is related to the degree of supercriticality 
in an identical way to the unmodulated case so the only effect of the modulation is 
to push the bifurcation point to a higher Rayleigh number. In order to consider the 
possible instability of (2.5) we write 

x = x0 + X,(t)  + iZi(t) 

with IzlalXol and substitution into (2.2) yields uncoupled linear equations for 2, 
and xi which have solutions such that 
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FIGURE 1. The periodic solution (2.5) for B = 1,A' = l ,il  = l , i2  = 2 and SZ = 0.002,0.02,0.2,2. 

Thus the disturbance n/2 radians out of phase with X = X ,  is neutrally stable 
whereas the in-phase mode is stable. This is the usual result for the BCnard problem, 
so that the only effect of the oscillations is indeed to push the bifurcation point to a 
higher Rayleigh number. 

In order to see how the solution (2.5) changes when the frequency s2 is, altered let us 
now focus on, for example, the particular case with say CT = 1, y = n/2, R2 = 1, A' = 1. 
The most dangerous mode cannot be identified until the ratio i2/il is specified there- 
fore, as a typical example, we take 11 = 1,& = 2. In this case the most dangerous mode 
corresponds to 0 = 0 so that the rolls are aligned with the direction of maximum shear. 

Figure 1 shows the solution Xo(t) for a variety of frequencies for the above case. 
We see that the amplitude becomes progressively concentrated a b u t  the times when 
G = 0 as 52 gets smaller. This result is not surprising since, on the basis of a 
quasi-steady linear theory, the most unstable times correspond to s2t = n/2,3n/2,. . .. 

3. The amplitude equations for interacting rolls 
The work of Kelly & Hu (1993) showed that an unsteady non-planar shear flow 

selects a particular roll orientation which amplifies first. The discussion of the previous 
section shows that every possible streamwise roll bifurcates supercritically from its 
critical linear value and is stable to rolls of the same orientation and wavenumber 
as that of the bifurcating mode. Now we shall extend the analysis to account for 
interactions between rolls of different orientations so as to allow the pattern to adjust 
to the changing shear. In order to do so we replace (2.1) by 

11 sin fit N 

w = - 6 s i n n z ~ X , ( t ) e x p -  3n2 in {cose. [x- 26Q ] 
2 n=l 4 

'2 sin(Qt + 7) + complex conjugate + . . . , (3.1) I1 [ 2652 
+ sine, y - 
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FIGURE 2. The nonlinear interaction coefficient co(@)/q -n/2 < @ < 7~12, for a = 0.25,0.5,1,2,4. 

where -n/2 d O1 < O2 < ... < ON < n/2 for some value of N 2 1. We note here that, 
on the basis of linear theory, the nth mode is unstable when 

R > R, + S2R2(0,) + .... ( 3 4  
so that the modes in general bifurcate at different values of the Rayleigh number. It 
is this fact that Hall & Kelly (1994) found was sufficient to destroy the possibility 
of hexagonal cells which usually occur when the variation with temperature of fluid 
properties is taken into account. In fact, since hexagons are associated with the 
breaking of symmetry about the plane z = i, we should not expect them to occur 
here. At order S3 we find that the amplitude equation to determine X,(t) is 

Here the function G is defined by ( 2 . 3 ~ )  whilst the interaction coefficient om,, m, n = 
1 ... N can be written down in closed (but tedious) form. It suffices here to note that 
om, 2 o,, = a for all m and n with equality only if m = n. In addition it is easy to 
show that om, = a,, and that 

a m ,  = ~ ( l o m  - &I) 
so that the interaction coefficients for a pair of rolls is a function only of the angle 
between the rolls. In figure 2 we show w(@)/a for 0 < Q, < 7t for a range of 
Prandt numbers. Now suppose that we consider the finite-amplitude disturbance with 
X, = 0,n # Ti and X, given by the periodic solution of (3.3) with n = H. Thus X, is 
given by (2.5) with G = G(O,,t) and we now look at the possible instability of this 
mode to a roll inclined at a finite angle to it. 

It follows that the linearized amplitude equation for the nth mode has exponential 
solutions with growth rate OL given by 
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and we note from figure 2 that o,:/a is always greater than unity whilst if n = f i  
(2.16) is recovered. We can then immediately deduce the following results from (3.4). 

(a) If the n mode is the most dangerous mode on the basis of linear theory then this 
mode is stable to all small-amplitude rolls inclined at any angle to the &-direction. 

(b) If the A mode is not the most unstable mode then it is stabie to all linearly 
more stable modes. It is unstable over a finite range of values of R2, beginning at 
k2 = R2(&), to rolls more unstable on the basis of linear theory. 

Hence the first mode to bifurcate is stable at all supercritical values of &. Thus 
in any experiment where the Rayleigh number is slowly increased only the mode 
selected by linear theory will be observed. 

Now let us examine in more detail the nature of the secondary bifurcation from a 
pure mode. In particular we consider the reduced interaction with only the nth and 
i?th modes present. If we define 

then, after dividing the reduced version of (3.3) through by X, and X, and integrating 
over a period, we can show that 

(a2 - 1)Q~i = LL {&(a - 1) - ZR2(On) + R2(&)} , (3 .5~)  
CI 

(a2 - l)Qn = {&(a - 1) - aR2(6~) + R2(&)}, (3.5b) 
CI 

where a a  = o(0, - OF). Since Qn,Q, are necessarily positive, the finite-amplitude 
mixed mode given above bifurcates supercritically from the pure X, # 0 mode when 

The mixed mode exists for all a2 > k2c and a stability analysis shows that it is 
always unstable. However the pure mode X, # 0 is made stable after the secondary 
bifurcation has occurred. The bifurcation picture for the two-mode interaction is then 
as shown in figure 3. Thus, in an experiment where all modes except two are somehow 
suppressed, there are two possible stable states at high enough values of the Rayleigh 
number. However it is unlikely that such an experiment could be carried out so we 
now see how the bifurcation picture of figure 3 cha9ges when disturbances of any 
orientation are taken into account. If it turns out that Rzc is bounded from above when 
n varies over all the possible modes which are more linearly unstable than the Eth 
mode, then we can expect multiple steady states at high enough Rayleigh numbers. 

An investigation of the behaviour of the different bifurcation points shows that 
this is indeed the case and that the locus of the points in the (R2,8)-plane separating 
regions of stability and instability on a nonlinear basis is as shown in figure 4 for 
the case X I  = 1,X2 = 2. If we choose a roll with a fixed value of 8 then the roll is 
linearly unstable when the continuous curve is crossed. However the finite-amplitude 
roll which bifurcates from the continuous curve is unstable until the dashed curve is 
crossed. We also note that the curves touch at 0 = 8' = 0, which corresponds to the 
most unstable roll on the basis of linear theory. Actually our expansion procedure 
fails sufficiently close to 8' because the bifurcating mode and the neighbouring ones 
controlling its stability have almost the same orientation and some of the cubic terms 
not contributing to the amplitude equation become singular; see Newel1 & Whitehead 
(1969) for a discussion of this point. The remedy for this difficulty is to look for an 
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FIGURE 3. The bifurcation picture associated with (3.3) for the case of two modes. 
Unstable solutions are denoted by the dashed curves. 
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FIGURE 4. The linear an! nonlinear stability boundaries for the pure mode periodic solutions of 
(3.3). The lower curve, R2 = R2(0), determines the value of R z  at which the pure mode with the 
given value of 0 bifurcates supercritically from the zero solution. The dashed curves, shown for 
CT = 0.1, 1,10, determine the values of 8, above which the bifurcating periodic solution at the given 
value of 0 is stable against all perturbations. 

evolution equation for a packet of modes centred on % = 8'. In order to derive the re- 
quired evolution equation we first consider the linearized amplitude equation obtained 
from (2.2) by replacing cos0 by ($/in)a/ax and sin% by ($/in)a/ay; this gives 

(3.7) 
a Y  a 1') C O S ( ~ ~  + y)- X .  

at 

where we now think of X as being a function of (t,x,y). 

by linear theory is given by the solution of 
The angle 0' which determines the orientation of the most dangerous mode selected 

aG 
(3.8) G(%*, t ) - (0* ,  t)dt = 0 a% 
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because the neutral value of = R2(8*) = A*(s2/271) JF'" G2(8', t)dt. At this stage it 
is convenient to rotate the x,y-axes so that the x-axis coincides with the 8' direction. 
We must then replace (3.7) by 

(3.9) 

Now we introduce the small parameter E by writing 

8, = R2(6*) + c2R2 + . . . , 
and introduce new variables <,q and T defined by 

2 2 
< = E X ,  ~ = E Y ,  T = E ~ .  

In (3.9) we must then replace d/dx  and a/ay by in/$+E2d/6< and d / a q  respectively 
whilst d/at is replaced by d/dt + c2d/dT. If we now expand X in the form 

x = XO(5, r ,  T, t) + E m ,  r ,  T, t) + . . * 
and substitute into (3.9) we obtain 

- = p {R2(8') - 3L*G2(8*, t)} 20, aXo 
at 

which has the periodic solution 

= XO(<, r ,  T)E(t), (3.10) 

where the periodicity of E follows from the definition of R2(8*) and XO is to be 
determined at higher order. At order E we find that 2, satisfies an inhomogeneous 
form of the equation for go; the solution of that equation may be written in the form 

and the periodicity of 21 in t then follows from (3.8). 

solutions and has a solution periodic in t if 
At order f 2  we find that the equation for X2 is forced by both the order-EO,c 

Here R; = R2(6*) and the positive constant Q is defined by the equation 

(3.11) 

(3.12) 

evaluated at 8 = 8'. The operator {idla< + 6a2/aq2} leads to a negative contribution 
to the growth rate when we seek a solution periodic in < and q, since kl and k2, the < 
and q wavenumbers, must be related by 2kl = -ki if the roll is to have wavenumber 
7 1 / 4 2  up to order c2. Equation (3.11) therefore leads to the eigenrelation for a roll 
almost parallel with the (rotated) x-direction. The equation is valid for ~ $ 6 ,  since 
when E - 6 further terms, essentially due to the expansion of d2/ax2 + a2/dy2 in 
terms of the new variables, come into play; see Newel1 & Whitehead (1969). Thus 
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for completeness we now take E = 6. If we now write the eigenrelation for Binard 
convection without a shear flow in the form 

a 3n2 (?&Fly+--  E2 o a T  a ) (3n' -- 2 E 2 4 y + € 2 E )  (2- E2 3 ) 

with 3 = ,/%ids + 8; + E 2 a i ,  and expand in powers of E we deduce that, when E = 6, 
equation (3.11) must be modified to give 

axo - 4 . a  
- = pR2X0 + S R ; p A *  aT 71 

(3.13) 
Now suppose that we retain nonlinear effects in the analysis leading to (3.13); this 

is most easily done by inserting the term - c c X I X ~ ~  on the right-hand side of equation 
(3.9). Note that this is formally valid only at infinite Prandtl numbers where we can 
ignore the mean flow correction to the velocity field; see Newel1 & Whitehead (1969) 
and Siggia & Zippelius (1981). 

The appropriate nonlinear form of (3.13) is then found to be 

-EX0 1x0 1 2 ,  (3.14) 

where 
2nlQ 

E = 271. 1 E2(t)dt, 

and Ri,p are evaluated at infinite Prandtl number. 

tially growing solutions will occur when 
If we linearize (3.14) it is easy to show that, on the basis of linear theory, exponen- 

If we assume that R2 > R2c, and note that E, p are positive, then a more convenient 

( 3.1 5a) 

form of (3.14) can be obtained by writing 

2f = b(R2 - R2c)]1/25, 21/4q = bZ2(R2 - R2c)]1/4v, 

We note that J 2  is positive. 
Equation (3.13) can then be written in the form 

2 

-= ax = - X[l - 1XI2] + J 2 -  a2x - {i-!=+$} X. 
aT aq2 

(3.15b) 

( 3 . 1 5 ~ )  

(3.16) 
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FIGURE 5. The regions of existence of the solution (3.17) for J = 0,0.5,1,2,4. For J = 0 the solution 
exists between the two curves labelled J = 0. For non-zero values of J the solution exists within 
the closed curves. 

We can think of J in the above equation as a scaled Reynolds number and setting 
J = 0 we recover a scaled form of the Newell-Whitehead equation. We note further 
that (3.16) also applies to the case of a steady shear flow but we cannot find a 
reference to it in the literature. 

Now let us consider the nature of the solutions of (3.16) and their stability char- 
acteristics. In the first instance we note that (3.16) has plane wave solutions of the 
form 

x = pei{lT+mT}, p2 = 1 - ~ 2 m 2  - ( 4  + m2l2. (3.17) 

The above solution exists only for 1 2 J2m2 + (e + m2)2 and in figure 5 we show a 
plot in the (4,m)-plane of the region where it exists for different values of the scaled 
Reynolds number J .  It can be seen that increasing J causes the region to contract in 
size. We further note that increasing J in this manner corresponds to increasing the 
flow Reynolds number with the Rayleigh number held fixed. In order to study the 
stability properties of (3.17) we write 

8 = pei{PF+mii} + uei{ [ ~ + P I ~ + [ ~ + v I v }  + be'{ [ ~ - P I ~ + [ ~ - V I V }  

where lal<.l,(bl<.l. We can then substitute into (3.16) to obtain a pair of coupled 
ordinary - differential equations in T which allow exponentially growing solutions with 
u,g - eFT where the growth rate p is determined by 

- 

- y = -p2 - (v4 + 6m2v2 + 2ev2 + 4mpv + p2) - J 2 v 2  
+ [p4 + ( 2 b  + 2mv][4 + m2 + v2] + 2 J * m ~ ) ~ ] ' / ~ .  (3.18) 

Following Newel1 & Whitehead it is easy to show that for the zero shear case, 
i.e. J = 0, the two most unstable disturbances correspond to rolls parallel and 
perpendicular to the given finite-amplitude roll state. More precisely we find that, 
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FIGURE 6. The regions of stability of the solution (3.17) for J = 0,0.5,1,2,4. For J = 0 the solution 
is stable between the two curves labelled J = 0. For non-zero values of J the solutions are stable 
within the closed curves. 

for J = 0, the finite-amplitude state (3.17) is unstable to a perpendicular set of rolls 
whenever 8 +  m2 < 0 and unstable to parallel rolls whenever (8 + m21 > 1/& The 
latter stability boundary corresponds to the Eckhaus instability mechanism and we 
deduce that (3.17) is stable only in the regime 

(3.19) 

When J # 0 we cannot write down an analytical expansion for the stability boundary 
but it is a straightforward numerical task to derive the stability boundaries numerically 
from (3.18). The results are illustrated in figure 6 for the range of values of the shear 
corresponding to figure 5 .  We see that the shear stabilizes a small band of modes 
with 8 + m2 < 0. However, we see that as the shear increases, the region where stable 
modes exist shrinks, and in fact becomes vanishingly small when J +. 00. We are 
now in a position to describe the evolution of the most dangerous mode according 
to linear theory. 

Firstly let us consider the implications of the results of figures 5 and 6 in more 
detail. In particular we concern ourselves with the implications for any experimental 
investigation of the problem discussed here and the implications for the linear roll 
mode selection problem of Kelly & Hu (1993). We first remind the reader about the 
zero shear flow case J = 0. In this case stable solutions occur between the curves 
8 + m2 = 0 , 1 / 8 .  Suppose that a solution has been established at some values of 
AR2 = (R2 - R2,) with 8 = ?,m = Ei and that A& is then varied slowly keeping the 
physical wavelength of the roll constant. In view of (3.15~) this means that when 
AR2 varies ( 8 , m )  must move along the parabola 8 = m 2 / E i 2 .  If AR2 is an increasing 
function 8 and m move towards the origin, otherwise 8 and m move towards infinity. It 
follows that when AR2 increases the roll pattern remains stable whilst if AR2 decreases 
the given roll pattern becomes unstable when (?/a2 + 1) m2 = l/& Thus for the 
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FIGURE 7. The upper part of figure 6 with the dotted curves representing the paths taken by the 
wavenumber when the Rayleigh number is increased. 

zero shear case any given roll pattern except that with e = Ei = 0 becomes unstable 
at a critical value of AR2 when the latter quantity is decreased. 

We now suppose that J # 0 and see how the above picture is changed. Firstly 
we suppose that the shear flow amplitude is held fixed whilst the Rayleigh number 
- is varied. Consider then the stability of the roll which initially exists for say J = 

J , t  = 5 , m  = Tiz. Thus for a given 7 the point (5,E) is within the appropriate closed 
curve of the type shown in figure 6. When A& is varied the fixed-wavelength roll 
is once again tracked by moving along the parabola / = ?m2/Ei2, either towards or 
away from the origin depending on whether AR2 is, increasing or decreasing. From 
the definition of J2 ,  (3.15c), it follows that when AR2 varies by a factor > 0 then 
the stable region for the roll now corresponds to that for J = ? /Al l2 .  Thus as the 
point ( / , m )  moves along the parabola t = ?m2/7E2 the appropriate stability region is 
that computed with J = ? ( e l / )  . It is easy to see from figure 6 that this means 
that any mode with ? or m # 0 will become unstable for sufficiently small AR2. When 
AR2 is an increasing function the situation is more complex but in most cases a given 
roll remains stable whilst Ak2 increases to infinity. However, for some ? this is not 
the case; in particular there is a range of values of 7 around 7 = 1 where some 
modes become unstable with increasing A&. We refer to figure 7 where we have 
shown the upper part of figure 6 in more detail. The dotted curve show the path 
taken by the point (8, m) for different initial values on the limit of the stability region 
for the J = 1 case. The arrows correspond to the direction to be followed when the 
Rayleigh number is increased. The other end points of the curves correspond to the 
Rayleigh number difference being increased by a factor of 4. Thus at the end points 
of each dotted curve the stability region of the mode is governed by the J = case. 
We see that the four lower modes have therefore passed into an unstable region and 
therefore the flow pattern will change. Thus in the presence of an unsteady shear flow 
roll patterns can be destroyed in some cases by increasing the Rayleigh number. 

- 112 
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is varied. In fact since the Rayleigh number has been expanded in the form 
Next suppose that the Rayleigh number is held fixed and the shear flow amplitude 

+ R;e2 + e4$ + . . . 27n4 
4 

R = -  

and R; is proportional to the square of the shear flow amplitude then varying the 
amplitude by 0(1) will alter the order-e2 terms above and our expansion will fail 
unless we perturb Rj?. only by O(e2).  This means that our previous analysis is valid so 
long as we replace R2 by f& + e4(R; - Ri*) where R;* is Ri evaluated at a fixed value 
of (XI,&). Thus we return to the problem of fixed shear flow amplitude and varying 
Rayleigh number and our previous discussion then applies. Hence if the shear flow 
amplitude is increased eventually all modes except the one with ? = h = 0 will become 
unstable whilst some rolls can be destabilized with decreasing shear flow amplitude. 

4. The quasi-steady limit of the amplitude equations 
In $3 we discussed the solution of the coupled amplitude equations given by (3.3). 

That discussion was restricted to the interaction of a pair of modes and we found 
that, for a given value of 8, there exists a critical value of = &, greater than the 
linear critical value of the mode in question, above which the mode is stable to all 
other perturbations. Figure 3 illustrated the latter result and shows that, with 8 and CJ 

fixed, linear instability theory predicts the onset of convection when the lower curve is 
crossed, whilst nonlinear theory shows that the resulting finite-amplitude disturbance 
is stable only beyond the dashed curve. The situation when 0 = 8*, the orientation of 
the most dangerous mode of linear theory, was discussed as a special case at the end 
of the last Section. 

We shall now discuss the solution of (3.3) in the low-frequency limit i2 -+ 0. More 
precisely we shall determine the size of the frequency below which imperfections 
present in the system must be allowed for. This problem for a single mode was 
first discussed by Lettis (1987) using the ideas of Hall (1983) and subsequently by 
Barenghi & Jones (1989) in the context of the Taylor vortex problem. The reason why 
imperfections are important at low frequencies can be see: from equation (2.2) which 
shows that a single mode bifurcates supercritically from R2 = R2(8) where R2 is the 
neutral value of R 2  predicted by linear theory; At low frequencies we expect linear 
instability to occur whenever the coefficient (R2 - /2'G2) in (2.2) is instantaneously 
positive. The analysis of Lettis (1987) showed clearly how imperfections come into 
play in order to make theory and physical intuition consistent. In the presence 
of imperfections and small frequencies we can show from (2.3 that the non-zero 
solution of this equation grows (locally) exponentiaQy whenever R2 > A'G2 and decays 
exponentially otherwise. It turns out that when R2 < R2(8) the exponential decay 
in the subcritical regimes dominates the growth elsewhere so that the only periodic 
solution of (2.2) is the zero-amplitude case. The latter result is consistent with (2.6) 
since, when R2 > R2(8), the growth and decay over different parts of the period balance 
and a non-zero finite-amplitude state exists. However, the instantaneous amplitude of 
this finite-amplitude state continues to decay exponentially in the parts of the cycle 
where k2 < A*G2 so that the disturbance isAconcentrated in the supercritical parts 
of the period, see figure 1. However when R2 > A'G2 the aTplitude is of the same 
magnitude throughout the period. It is in the regime where R2 - I*G2 changes sign 
within a period that imperfections play a crucial role. 
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Suppose then that the typical size of any imperfections present in the system is 
O(S3). The imperfections might arise from end effects, Hall & Walton (1978), wall 
undulations, Kelly & Pal (1978), or random fluctuations within the flow. If we allow 
the imperfections to vary on the same time scale as the basic flow, then the appropriate 
generalization of (2.2) is, after some analysis, found to be 

dX 
~ = ,LA { R 2  - n’Gz(t)} X - 
dt 

Here G is as defined by (2.3a), 9 is a scaled 0(1) constant and I(t)  = 0(1) represents 
the fluctuating imperfection. In general we expect that I(t) will vary on a different 
time scale than the basic flow but the scale of variation of the imperfection is not 
crucial to the following discussion. Indeed if the imperfections arise from end effects, 
Hall & Walton (1978), I is a constant. We now state the main conclusions which 
can be drawn from Lettis (1987) who discussed an equation similar to (4.1). We 
consider the limit 52 + 0 and suppose that kz - 1*G2 changes sign within a period 
of oscillation. It turns out that in this limit and with 9 - O K , K  > 0, there is a 
non-zero periodic solution of (4.1) with X = 0(1) whenever f i 2  > A*G2, and X = O(9) 
otherwise. The non-zero finite-amplitude solution is made possible by the fact that 
in the linearly stable part of the cycle the imperfection prevents X from becoming 
exponentially small. The choice K = is the easiest to describe since in that case 
all of the terms in (4.1) are comparable at the instant when the modes in question 
become locally unstable. 

The above discussion refers to the case when R2 - 1’G2 changes sign in a period. 
If R2 is decreased the finite-amplitude solutions driven by the imperfections are O(9) 
except for smaller and smaller intervals. When 8 2  > 1*G2 throughout the period the 
imperfections play no role at leading order and the solution is given by (2.5) together 
with an O(9) correction. 

Now let us determine the role of imperfections in the solution of (3.3). Again for 
an imperfection of size O(S3),  it can be shown that (3.3) is modified to give 

Here yn for n = 1,2, ... are scaled constants and I ,  = 0(1) determines the time 
variation of the imperfection of the nth mode. Note also that there is no physical 
mechanism to select which of the N modes should dominate the interaction. Some 
discussion of equations of the type (4.2) is given in Benoit (1990); see for example 
the paper by Erneux et al. The conclusions reached in the latter paper for a single 
model equation are consistent with that of Lettis (1987). If the imperfection is 
associated with end effects or wall undulations then it is appropriate to take I,(t) to 
be constant. We therefore set I ,  = 1 until further notice. However we can show that 
the results found below are essentially independent of the time dependence of I,, and 
for simplicity we :hall confine our attention to the case when the imperfections are 
real. Thus when R2 - 1’G2 becomes positive some of the amplitudes grow rapidly to 
0(1) values and remain 0(1) until local decay takes a disturbance amplitude down to 
a size fixed by that of the imperfection. 

Suppose then that we allow the frequency 52 to tend to zero with yn  = O(S2)3/4. 
We shall here discuss the simplest case when ynI ,  is a constant and Xn are real and 
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write ynI ,  = G?3/47n where 7,  is O( 1). If we define a new time scale t = G?t then (4.2) 
becomes 

where G is given by ( 2 . 3 ~ )  with f i t  replaced by t. The discussion of the previ- 
ous Section shows that, with 7, = 0, periodic finite-amplitude solutions of (4.3) 
bifurcate from the linear neutral points k2 = R2(0). On the other hand, for G? 
yfficiently small, we expect that a finite-amplitude pure mode should exist whenever 
R2 > A'G2. Indeed it is to be expected that, on the basis of quasi-steady theory, finite- 
amplitude mixed mode states with a different number of non-zero mode amplitudes 
will also be possible at different times during a period. In order to see how a switch 
from say M to M - 1 modes takes place at some instant it is necessary to now take 
7, # 0. We therefore suppose that in some time interval tl < 7 < t2 a solution of (4.3) 
exists with, after ordering the modes in a suitable manner, 

X ,  = x,(t) + o ( q 3 ' 4 ,  = ~ 2 , .  . . M ,  
523/4y, x, = G?3/4Xn(i) = + ..., n = M + l ,  ... N ,  

,u [A' G2 - R,] 

where the functions X,, n = 1,2,. . . , M are found by setting dldt  = O,X, = 0, n > M ,  
in (4.3), dividing through by X ,  and solving the resulting M linear equations for 
X,'. The solution obtained in this way is valid so long as X,' > 0, n = 1,2,. . . M .  
Whilst this is the case the M finite-amplitude modes evolve quite independently of 
the imperfection-driven modes X M f l , .  . . , X N .  We note that the finite-amplitude modes 
are independent of the imperfection at leading order. Furthermore we also note that, 
at any given time, there will be several possible choices for M .  Thus for example 
there will be a family of pure mode solutions with M = 1. These correspond to the 
single-mode solutions of (4.3) which exist wherever a mode is instantaneously unstable 
and its finite-amplitude state is stable to other linearly unstable perturbations. At 
any instant there will of course be a mode which is linearly the most unstable, i.e. 
the mode with G = 0, but that does not mean that it continues to dominate in the 
finite-amplitude state. In fact a secondary instability analysis of (4.3) with G held 
fixed shows that any pure mode eventually becomes stable against all perturbations 
so that, at any instant in time, no preferred mode can be identified by nonlinear 
theory. This means that at any instant the disturbance will depend on the nature 
of 7, and the previous history of the flow. More precisely it means that when the 
basic state evolves in time we should not necessarily expect that the disturbance 
pattern will be in the form of a roll pattern aligned in such a manner as to make 
G = 0. 

Now let us see how the above expansions must be modified at a time when the 
number of 0(1) disturbances changes. Again we suppose that the modes have been 
conveniently ordered so that, when t = t2, the Mth mode obtained from the solution 
procedure described above is found to have zero amplitude. The exponential decay 
of the Mth mode in the vicinity of t2 is halted by the imperfections in the system. 
This takes place in an O(G?1'2) time interval near t = t2; we therefore write 
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and then, near t 2 ,  we write 

X, = X,(t2) + O(Q”2),  TI = 1,2,..  . M - 1, 

Here the quantities Xn(i2), n = 1, M - 1, are obtained by solving 

M-1 
2 p(k2 - 1*G2(t2)) = 1 mmfl~Xm~ , n = 1 , .  . . M - 1, 

m=l 

whilst X,,,(?) satisfies the evolution equation 

.... 

24 1 

( 4 . 4 ~ )  

(4.4b) 

N .  (4.4c) 

where p M  and aM are negative and positive constants respectively. 
The required solution of (4.5) has XM - l ? l l / ’  when ? + -a and is such that XM - 

j 7 ~ / p ~ ?  when ? + co. This ensures a match between the solution in the transition 
layer and the local equilibrium state before and after this layer. Thus in an O(Q’/2)  
interval a finite-amplitude mode decays into the background state. A similar analysis 
describes the growth out of the background of a single mode at some time t = ?I.  

The above discussion shows that the periodic solutions of (4.2) with 7 ,  = 0 can be 
perturbed by O( 1)  amounts when small imperfections are present. Thus, at any instant, 
for small frequencies any one of the instantaneously possible states can be excited by 
O(Q3/4) imperfections. However, modes may amplify from, or decay into, the O(Q3l4) 
background at any instant so that the convection pattern will vary over a period. 

At sufficiently large values of k2 the periodic solutions of the imperfection-free 
problem are valid throughout a period and the amplitudes are perturbed only at 
O(Q3l4). Thus imperfections only play a role when a local solution of the quasi- 
steady problem has one of its non-zero amplitudes vanishing at some instant. 

It follows that the stabilizing effect found by Kelly & Hu (1993) for this flow is 
destroyed at frequencies of size y4/3 where $ is the size any imperfections present 
in the system. Thus, if we think of 9 as being fixed, when the frequency has been 
reduced to 0(94/3), the system behaves in an effectively steady manner and at any 
instantaneously unstable time a variety of finite-amplitude states are possible. In fact 
we now show, using the ideas of Lettis (1987), that the linear selection mechanism 
of Kelly & Hu (1993) is destroyed at even larger values of the frequency. Clearly 
we need to identify the size of the frequency at which imperfections of size O(9) first 
have an 0(1) effect on the system. In the first instance we suppose that Q + 0 with 
9 = 0 ( Q K ) , O  < K .  For 0 < K < $ the above analysis survives essentially intact 
whereas for K > the method of Lettis shows that the only significant change in 
structure occurs near the time t = t2, where a mode either amplifies from or decays 
into the background state. Since the imperfection is now smaller a direct match 
through a single boundary layer at t = t2 onto the algebraically growing or decaying 
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mode cannot be achieved. It turns out, see Lettis (1987), that the single boundary 
layer at t = t~ must be replaced by two layers defined by 

Away from the outer layer, - t21 - OIQ In 01 1/2, imperfections play no significant 
role and at any instant a variety of possible states will again be possible. Thus, if .i, 
is held fixed when the frequency has been reduced to B1lK for any K > 0, the linear 
selection mechanism of Kelly & Hu is not operational and the system behaves in a 
quasi-steady manner. Since the latter result is valid for all K > 0 it is to be expected 
that once Q falls below an O( 1) value quasi-steady effects will dominate. In fact, as 
again was first shown by Lettis (1987), this is not quite true and there is a minimum, 
but small, size for Q where this is the case. This limiting case can be seen either 
directly from (4.2) or by a more careful examination of the thickness of the outer 
boundary layer at t = t 2  for 9 = O ( Q K )  by taking the further limit K -+ 00. In the 
latter case we take K sufficiently large that the outer layer is of length O( 1). In this 
case the adjustment of a mode to or from a finite-amplitude state is now taking place 
on the time scale over which the non-vanishing mod5s evolve. The linear exponential 
growth then amplifies X ,  to a size such that QX, - (R2 -A'G2)Xn - 7, near 72. Either 
of these approaches shows that the critical size of 9 is given by 

9 = O(e-D/") (4.6) 

for some constant D. In other words, if each disturbance is smaller than O(e-D/R) 
for D sufficiently large, the linear exponential growth over the unstable parts of the 
period is not sufficient to stimulate any mode into its quasi-steady state. If we again 
think of 9 being fixed it follows from (4.6) that when Q is decreased from an 0(1) 
value the system is first able to respond in a quasi-steady manner when Q falls to 
O( len.i,I-'). Hence even very small imperfections are important when the frequency is 
decreased from an O( 1) value. Now we shall report on some numerical solutions of 
(4.3) which illustrate the results of the above discussion. 

The numerical integration of (4.3) was carried out using a fourth-order Runge- 
Kutta scheme. In the first instance we report on some solutions of (4.3) for an 0(1) 
value of the frequency. We take M in (4.3) to be 32 and define 8, by 

( n -  1) 
6 ---+- IT, n = 1,2 ,..., 32. 

2 32 n -  

In the first case we choose ynl, = lop3 for all n and the initial conditions were 
taken to be: 
Case (a) 
Case (b )  
Case (c) 

X ,  = 0, n # 17, 
X ,  = 1, n = 1,2 ,... 32;, 
X ,  = 0, n # 16, X16 = 1. 

X17 = l; ,  

The first case corresponds to an initial roll mode parallel to the y-axis. This 
is the most dangerous orientation for a disturbance on the basis of linear theory 
for the particular choice i 1  = l , i2  = 2. Figure 8 shows a few of the amplitudes 
X ,  corresponding to the periodic solution obtained by integrating (4.3) with initial 
conditions (a)  over a sufficient time interval and with A; = R2 = o = 1. We see that 
X17 is the only mode shown which has amplitude greater than that of the background 
state. In fact the modes not shown are also of small amplitude so that at all times 
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FIGURE 8. The periodic solution of (4.3) corresponding to initial conditions (a). In order to be seen 
on this scale the n = 15,16,18,19 modes have been multiplied by 100. 

the convection pattern is in the form of rolls aligned almost with the yaxis. A similar 
calculation with (c)  as initial conditions produced the same periodic solution. If the 
calculation is repeated with (b)  as initial condition we obtain a picture similar to 
figure 8 except that the only mode greater than the background state is X16=1. The 
results of these calculations therefore confirm the predictions of figure 2. Calculations 
with other initial conditions produced further periodic solutions with, in each case, a 
single 0(1) disturbance amplitude. However it could well be that a more exhaustive 
search might produce more complex periodic solutions with more than one amplitude 
being O( 1). 

Next we discuss the solution of (4.3) with y, # 0. We shall again take 1' = 2, = CT = 

11 = 1,& = 2, M = 32. The initial conditions were taken to be X17 = 1, X, = 0, n # 17 
and we considered the following cases: 
Case ( d )  
Case ( e )  ynI, = a = 0.021; 
Case ( f )  

ynZ, = lo-", Q = 0.021; 

Y,I, = 0.01, Q = 1. 

The first two of the above cases correspond to a relatively small value of the fre- 
quency and the aim of the calculations was to confirm the results of our investigation 
into the role of imperfections in the low-frequency limit. In order to quantify the 
role of the imperfections in the pattern selection problem at low frequencies we have 
in figures 10, 11, 12 shown the perturbation temperature isotherms for the above 
cases at z = at the instants Qt = 0, x/4, n/2,3x/4, x, 5x/4,3x/2,7x/4. Figure 9 
describes a convection pattern with period n/S2 whereas the basic flow has period 
2x/Q. However solutions with period 2x/Q are also possible and one such flow is 
obtained by replacing y, by 

Figure 9 corresponds to imperfections of size lo-" yet remarkably we see that the 
x/Q-periodic solution shown is significantly altered from the pattern which would be 
found with y, = 0. In the absence of any imperfection the convection pattern would 

in Case (d) .  
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FIGURE 9 (a-h). The contours of constant temperature perturbation at S2t = 0, n/4,3n/4, n, 
57~/4,3n/2,In/4, with z = n/2 and conditions given by case ( d ) .  The horizontal and vertical 
axes correspond to x, y respectively and hot regions are represented by darker shading. 

be in the form of rolls parallel to the y-axis. Figure 9 shows that the roll pattern 
is significantly perturbed away from the y-direction for most of the period. Further 
calculations showed that it was necessary to reduce y n  to before the rolls are, 
on the accuracy of figure 9, parallel to the y-axis throughout a period. 

In figure 10 we see that at even higher imperfection amplitudes the pattern again 
has period n/Q. In addition we now see that the oscillation deforms the straight roll 
pattern of the imperfection-free case into complicated curved cell patterns. The results 
we have obtained are therefore consistent with our analysis in that they show clearly 
the sensitivity of the system to imperfections at low frequencies. The fact that (4.3) 
has solutions which are either synchronous or subharmonic with the coefficients in 
that equation is not surprising. Some experimentation with initial conditions showed 
that the response is a function of initial conditions and the size of the imperfections. 
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FIGURE 10 (a-h). The contours of constant temperature perturbation at SZt = 0, n/4,3n/4, n, 5n/4, 
3n/2,1n/4, with z = 7112 and conditions given by case (e). The horizontal and vertical axes 
correspond to x, y respectively and hot regions are represented by darker shading. 

In figure 11 we show the cell pattern corresponding to Case 0. At this much larger 
frequency we see that even a relatively large imperfection does not significantly alter 
the cell pattern from that predicted by an imperfection-free calculation. 

Finally in figure 12 we show the results for the case when the imperfections are 
of a random nature. The results shown correspond to the same parameters as 
figure 10 with the exception that yn  is now taken to be a random variable given 
by a normal distribution of mean lop5 and variance unity. We now see once again 
that the randomly varying imperfection leads to a convection pattern which changes 
orientation through the period of oscillation of the basic flow. 

It should be noted that all the results presented correspond to M = 32. Calculations 
at larger values of M produce similar results if the amplitudes are scaled appropriately. 
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FIGURE 11 (a-h). The contours of constant temperature perturbation at SZt = 0, ~ / 4 , 3 ~ / 4 ,  K, 5x14, 
3n/2,7~/4,  with z = n / 2  and conditions given by case v). The horizontal and vertical axes 
correspond to x, y respectively and hot regions are represented by darker shading. 

More precisely it should be noted that the continuous case is approached by taking 
the limit M + co with My,  held fixed. 

5. Conclusions 
We have investigated the effect of an unsteady shear flow on the planform of 

thermal convection. Previous linear work by Kelly & Hu (1993) had identified a 
selection mechanism for the roll orientation of a Boussinesq fluid in the presence of 
flow oscillations. In addition Kelly & Hu found that the effect of the oscillations was 
to stabilize the flow. 

As a special case we investigated the limit of the Rayleigh number perturbation 
tending to zero. In that case the roll cells must line up close to the angle of the 
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FIGURE 12 (a-h). The contours of constant temperature perturbation at at = 0, n/4,3n/4, n, 5 ~ 1 4 ,  
3n/2,1n/4, with z = 7112 and a randomly varying imperfection. The horizontal and vertical axes 
correspond to x, y respectively and hot regions are represented by darker shading. 
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most dangerous mode identified by the Kelly-Hu mechanism and the evolution of a 
packet of modes centred about that direction is determined as generalization of the 
Newell-Whitehead equation. However we found that there are significant differences 
from the zero shear case caused by the extra terms in the evolution equation. The 
most important difference is that, for certain fixed values of the shear, when the 
Rayleigh number is increased the roll pattern can become unstable and a jump to 
a new configuration will take place. Such a scenario is not possible for the Newell- 
Whitehead equation. Similarly if the Rayleigh number is held fixed and the shear flow 
amplitude decreased, so that the flow is linearly more unstable, the roll orientation 
must jump discontinuously because of the instability of certain roll orientations. 
Finally we note that the stabilizing mechanism found by Kelly & Hu persists into the 
nonlinear regime until imperfections play a role in the system. Thus, if in any practical 
application of the mechanism the size of the background noise can be determined, 
then, in order to achieve the full stabilizing effect of the oscillations, the time scale of 
the oscillations must be shorter than that over which the small imperfection has an 
effect on the convection amplitude. 

In this paper we have investigated the nonlinear version of the problem considered 
by Kelly & Hu but concentrated on the low-frequency limit. We found that there is 
a critical size for the frequency below which imperfections present in the system play 
a crucial role and in effect cause the system to respond in a quasi-steady manner. In 
particular the stabilization found by Kelly & Hu is lost at sufficiently small frequencies 
so that, in the presence of small imperfections, the nonlinear problem is singular. By 
this we mean that, for a given small size of imperfection, the nonlinear solution at 
sufficiently small frequencies differs by an O( 1)  amount from its value in the absence 
of imperfections. However another important result is that, even though at small 
enough frequencies the fluid responds in a quasi-steady manner, at any instant in 
time the convection cells do not line up in the direction associated with the direction 
identified as being the most unstable on the basis of linear theory. Thus, unlike what 
one might naively believe, the convection at small enough frequencies is not identical 
to that which would be seen for the corresponding steady case. Our calculations 
showed that in fact the cell pattern only resembles the expected straight roll for part 
of a period. At other times complicated curved cells are generated. 
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